Главная
/
Математика
/
OcHyứre. 3. (cos^2(-125^0)sin(285^0))/(ctg^2)(324^(0)tg(165^0))

Вопрос

ocHyứre. 3. (cos^2(-125^0)sin(285^0))/(ctg^2)(324^(0)tg(165^0))

Решения

4.4 (195 Голоса)
Франциска
Экспертная проверка
профессионал · Репетитор 6 лет

Ответ

To solve the given expression, we need to simplify the trigonometric functions and then perform the division.Given expression: Step 1: Simplify the trigonometric functions.cos(-125°) = cos(360° - 125°) = cos(235°) = -cos(25°)sin(285°) = sin(360° - 75°) = -sin(75°)ctg(324°) = ctg(360° - 36°) = -ctg(36°)tg(165°) = tg(180° - 15°) = -tg(15°)Step 2: Substitute the simplified trigonometric functions into the expression. Step 3: Simplify the expression. Step 4: Use the trigonometric identities to simplify the expression further.cos^2(25°) = 1 - sin^2(25°)sin(75°) = cos(15°)ctg(36°) = tg(15°) = Substituting these identities into the expression, we get: Step 5: Simplify the expression further. Step 6: Multiply the numerator and denominator by . Step 7: Simplify the expression. Step 8: Use the trigonometric identities to simplify the expression further.sin(15°) = cos^2(15°) = tg^2(36°) = Substituting these identities into the expression, we get: Step 9: Simplify the expression further. Step 10: Multiply the numerator and denominator by . Step 11: Simplify the expression. Step 12: Simplify the expression further.$\frac {(1 - sin^2(25°