Вопрос
6) (1(2)/(7))^x^(2-4)leqslant 1
Решения
4.5
(368 Голоса)
Чулпан
Экспертная проверка
мастер · Репетитор 5 лет
Ответ
To solve the inequality \((1\frac{2}{7})^{x^2 - 4} \leq 1\), we first need to express the mixed number
as an improper fraction.
So the inequality becomes:
Next, we analyze the expression \(\left(\frac{9}{7}\right)^{x^2 - 4}\). For this expression to be less than or equal to 1, the exponent
must be less than or equal to 0 because
.
Solving this quadratic inequality:
This gives us:
Therefore, the solution to the inequality \((1\frac{2}{7})^{x^2 - 4} \leq 1\) is: