Вопрос
4. Haitru Hanmenbulee H HaH60.nbluee 3Hauenns QYHKLHHH y=f(x) Ha orpeake a;b 26 y=x^5-5x^4+5x^3+1,[-1;2]
Решения
4.5
(289 Голоса)
Бронислав
Экспертная проверка
эксперт · Репетитор 3 лет
Ответ
To find the maximum and minimum values of the function
on the interval
, we need to find the critical points of the function within the interval and evaluate the function at the endpoints.The critical points occur where the derivative of the function is equal to zero or undefined. Let's find the derivative of the function
:
Now, we set the derivative equal to zero and solve for
:
The critical points are
,
, and
. However, only
and
are within the interval
.Now, we evaluate the function at the critical points and the endpoints:
Therefore, the maximum value of the function
on the interval
is
, and the minimum value is
.