Вопрос
What is the average value of sin(x) on the interval -6leqslant xleqslant -1 ?
Решения
4
(311 Голоса)
Жасмин
Экспертная проверка
продвинутый · Репетитор 1 лет
Ответ
To find the average value of \( \sin(x) \) on the interval
, we use the formula for the average value of a continuous function \( f(x) \) over an interval
:
In this case, \( f(x) = \sin(x) \),
, and
. So, we need to compute:
Simplify the denominator:
So the expression becomes:
Next, we need to evaluate the integral \( \int_{-6}^{-1} \sin(x) \, dx \). We know that the integral of \( \sin(x) \) is \( -\cos(x) \):
Applying the limits of integration from
to
:
Since \(\cos(-x) = \cos(x)\), this simplifies to:
Now, substitute this back into the expression for the average value:
Thus, the average value of \( \sin(x) \) on the interval
is: