Главная
/
Математика
/
What Is the Average Value of Sin(x) on the Interval -6leqslant Xleqslant -1 ?

Вопрос

What is the average value of sin(x) on the interval -6leqslant xleqslant -1 ?

Решения

4 (311 Голоса)
Жасмин
Экспертная проверка
продвинутый · Репетитор 1 лет

Ответ

To find the average value of \( \sin(x) \) on the interval , we use the formula for the average value of a continuous function \( f(x) \) over an interval : In this case, \( f(x) = \sin(x) \), , and . So, we need to compute: Simplify the denominator: So the expression becomes: Next, we need to evaluate the integral \( \int_{-6}^{-1} \sin(x) \, dx \). We know that the integral of \( \sin(x) \) is \( -\cos(x) \): Applying the limits of integration from to : Since \(\cos(-x) = \cos(x)\), this simplifies to: Now, substitute this back into the expression for the average value: Thus, the average value of \( \sin(x) \) on the interval is: