Главная
/
Математика
/
A) (20y)/(36y^2)-4-(2y-3)/(2-6y)=(5-2y)/(6y+2)

Вопрос

a) (20y)/(36y^2)-4-(2y-3)/(2-6y)=(5-2y)/(6y+2)

Решения

4.2 (291 Голоса)
Фаина
Экспертная проверка
мастер · Репетитор 5 лет

Ответ

To solve the equation , we need to find a common denominator for the fractions on the left-hand side and then simplify the equation.Step 1: Find a common denominator for the fractions on the left-hand side.The denominators are and . We can factor out a 4 from the first denominator to get , and we can factor out a -2 from the second denominator to get . The common denominator is .Step 2: Rewrite the fractions with the common denominator. Step 3: Simplify the numerators. Step 4: Combine the fractions on the left-hand side. Step 5: Simplify the numerator on the left-hand side. $\frac {-72y^3 + 168y^2 + 68y - 12}{4(9y^2 - 1)(-2(1 - 3y))}=\frac {4(5-2y)(9y^2 -