Вопрос
lim _(xarrow 0)(sin^25x)/(4x^2)
Решения
4.2
(252 Голоса)
Юлия
Экспертная проверка
мастер · Репетитор 5 лет
Ответ
To find the limit of the given expression as
approaches 0, we can use the standard limit
.First, rewrite the given expression:
We can split this into two parts:
Next, use the identity \( \sin^2(5x) = (\sin(5x))^2 \):
Now, apply the standard limit \( \lim_{x \to 0} \frac{\sin(5x)}{x} = 5 \):
Therefore, the limit is: