Вопрос
find Inverse function. [ f(x)=sqrt(x^2)-5 ]
Решения
3.5
(165 Голоса)
Улеб
Экспертная проверка
элита · Репетитор 8 лет
Ответ
To find the inverse function of \( f(x) = \sqrt{x^2 - 5} \), we need to follow these steps:1. **Express
in terms of
:**
2. **Swap
and
:**
3. **Solve for
:** - First, square both sides to eliminate the square root:
- Then, solve for
:
- Finally, take the square root of both sides:
4. **Determine the domain and range:** - The original function \( f(x) = \sqrt{x^2 - 5} \) is defined for
, which means
or
. - The range of \( f(x) \) is \( [0, \infty) \) because the square root function outputs non-negative values. Since the inverse function must be a function (i.e., it must pass the vertical line test), we restrict the domain of the original function to
. This ensures that the original function is one-to-one and thus has an inverse.5. **Write the inverse function:** Given the restriction
, the inverse function is:
So, the inverse function of \( f(x) = \sqrt{x^2 - 5} \) is: