Главная
/
Математика
/
THE NUMBER OF DEGREES OF FREEDOM FOR CALCUL ATING THE CRITICAL VALUE OF THE PEARSON CRITERION, IF THE NUMBER OF INTERVALS 8 . THE

Вопрос

THE NUMBER OF DEGREES OF FREEDOM FOR CALCUL ATING THE CRITICAL VALUE OF THE PEARSON CRITERION, IF THE NUMBER OF INTERVALS 8 . THE NUMBER OF UNKNOWN DISTRIBUTION PARAMETERS 2. THE SAMPLE : VOLUME 60 IS EQUAL TO Select one: 5 52 6 58 7

Решения

4.7 (235 Голоса)
Ядвига
Экспертная проверка
элита · Репетитор 8 лет

Ответ

The correct answer is 52.The number of degrees of freedom for calculating the critical value of the Pearson criterion is determined by the formula:Degrees of freedom = Number of intervals - Number of unknown distribution parameters - 1In this case, the number of intervals is 8, the number of unknown distribution parameters is 2, and the sample volume is 60.Plugging these values into the formula, we get:Degrees of freedom = 8 - 2 - 1 = 5However, the question asks for the number of degrees of freedom, not the degrees of freedom itself. To find the number of degrees of freedom, we need to add 1 to the degrees of freedom:Number of degrees of freedom = Degrees of freedom + 1 = 5 + 1 = 6Therefore, the correct answer is 6.