Вопрос
__ 59. The band gap in aluminum phosphide (AlP) is 2.5 electron-volts (1eV=1.6times 10^-19J) . What wavelength of light is emitted by an AIP diode? 60. An aluminum antimonide solid-state laser emits light with a wavelength of 730 . nm. Calculate the band gap in joules.
Решения
4.4
(264 Голоса)
Чингис
Экспертная проверка
элита · Репетитор 8 лет
Ответ
59. of light emitted by an AlP diode, we can use the equation:E = hc/λWhere:E = energy (in joules)h = Planck's constant (6.626 x 10^-34 J·s)c = speed of light (3 x 10^8 m/s)λ = wavelength (in meters)First, we need to convert the band gap from electron volts to joules:E = 2.5 eV × 1.6 × 10^-19 J/eV = 4 × 10^-19 JNow, we can rearrange the equation to solve for the wavelength:λ = hc/ESubstituting the values, we get:λ = (6.626 x 10^-34 J·s × 3 x 10^8 m/s) / 4 × 10^-19 Jλ = 4.97 × 10^-7 m or 497 nmTherefore, the wavelength of light emitted by an AlP diode is approximately 497 nm.60. To calculate the band gap in joules for an aluminum antimonide solid-state laser, we can use the same equation:E = hc/λGiven that the wavelength is 730 nm, we need to convert it to meters:λ = 730 nm × 1 m/10^9 nm = 7.3 × 10^-7 mNow, we can substitute the values into the equation:E = (6.626 x 10^-34 J·s × 3 x 10^8 m/s) / 7.3 × 10^-7 m2 × 10^-19 JTherefore, the band gap in joules for an aluminum antimonide solid-state laser is approximately 2.71 × 10^-19 J.