Главная
/
Математика
/
1. Haǎm 0)3 Q YHKLIHH F(x)=(2x^2+3)/(x-sqrt (x^2)-4)

Вопрос

1. Haǎm 0)3 Q YHKLIHH f(x)=(2x^2+3)/(x-sqrt (x^2)-4)

Решения

4.4 (312 Голоса)
Галина
Экспертная проверка
мастер · Репетитор 5 лет

Ответ

To find the limit of the given function as x approaches 2, we can use the following steps:1. Substitute x = 2 into the function: f(2) = (2(2)^2 + 3) / (2 - √(2^2 - 4)) = (8 + 3) / (2 - √(4 - 4)) = 11 / (2 - 0) = 11 / 22. Since the denominator is not equal to zero, the function is defined at x = 2.3. Therefore, the limit of the function as x approaches 2 is: lim(x→2) f(x) = 11/2So, the correct answer is 11/2.