Вопрос
6.120 . lim _(xarrow 0)((1+3x)/(1+x))^(5)/(x)
Решения
4.2
(283 Голоса)
Орест
Экспертная проверка
мастер · Репетитор 5 лет
Ответ
To evaluate the limit \(\lim_{x \to 0} \left( \frac{1 + 3x}{1 + x} \right)^{\frac{5}{x}}\), we can use the property of limits involving exponentials and logarithms. Let's denote the expression inside the limit as
:
Taking the natural logarithm of both sides, we get:
Using the property of logarithms, we can bring the exponent in front:
Now, we need to evaluate the limit of the right-hand side as
approaches 0:
We can simplify the argument of the logarithm:
As
approaches 0,
approaches 0, so:
Thus, the expression becomes:
Therefore, the natural logarithm of the limit
is 10:
Exponentiating both sides to solve for
:
So, the limit is: