Главная
/
Математика
/
What Is the Average Value of Sqrt [3](x) on the Interval -5leqslant Xleqslant 9

Вопрос

What is the average value of sqrt [3](x) on the interval -5leqslant xleqslant 9

Решения

4.3 (298 Голоса)
Ростислав
Экспертная проверка
мастер · Репетитор 5 лет

Ответ

To find the average value of the function \( f(x) = \sqrt[3]{x} \) on the interval , we use the formula for the average value of a continuous function over an interval : Here, \( f(x) = \sqrt[3]{x} \), , and . We need to compute the integral: First, we find the antiderivative of : Now, we evaluate this antiderivative at the bounds and : Next, we calculate \( (9)^{4/3} \) and \( (-5)^{4/3} \): Thus, Now, we compute the average value: Therefore, the average value of on the interval is: