Вопрос
What is the average value of sqrt [3](x) on the interval -5leqslant xleqslant 9
Решения
4.3
(298 Голоса)
Ростислав
Экспертная проверка
мастер · Репетитор 5 лет
Ответ
To find the average value of the function \( f(x) = \sqrt[3]{x} \) on the interval
, we use the formula for the average value of a continuous function over an interval
:
Here, \( f(x) = \sqrt[3]{x} \),
, and
. We need to compute the integral:
First, we find the antiderivative of
:
Now, we evaluate this antiderivative at the bounds
and
:
Next, we calculate \( (9)^{4/3} \) and \( (-5)^{4/3} \):
Thus,
Now, we compute the average value:
Therefore, the average value of
on the interval
is: