Главная
/
Математика
/
Ct All Expressions Matching the Value of Indefinite Iral Int Tan(t)/(2)dt 2cos^2t+C (2)/(cos^2)(t)/(2)+C -2ln(cos(t)/(2))+c

Вопрос

ct all expressions matching the value of indefinite Iral int tan(t)/(2)dt 2cos^2t+C (2)/(cos^2)(t)/(2)+C -2ln(cos(t)/(2))+c -ln(cos(t)/(2))+c

Решения

4.2 (256 Голоса)
Харлам
Экспертная проверка
элита · Репетитор 8 лет

Ответ

The correct answer is: Explanation:The integral can be solved using the substitution method. Let , then , and . Substituting these into the integral, we get: Now, we can use the identity and integrate: Using the integral of secant, we have: Substituting back , we get: Now, we can use the identity and simplify: \tan u = \frac{\sin u}{\cos u} 2\ln|\frac{1 + \sin\frac {t}{2}}{\cos\frac {t}{2}}| + C \sin^2 u + \cos^2 u = 1 2\ln|\frac{1 + \sin\frac {t}{2}}{\cos\frac {t}{2}}| + C = 2\ln|\frac{1 + \sin\frac {t}{2}}{\cos\frac {t}{2}}| + C \ln|a| = \ln|b| + \ln|c| 2\ln|\frac{1 + \sin\frac {t}{2}}{\cos\frac {t}{2}}| + C = 2\ln|1 + \sin\frac {t}{2}| - 2\ln|\cos\frac {t}{2}| + C \ln|a| - \ln|b| = \ln|\frac{a}{b}| 2\ln|1 + \sin\frac {t}{2}| - 2\ln|\cos\frac {t}{2}| + C = 2\ln|\frac{1 + \sin\frac {t}{2}} {t}{2}}| + C \ln|a| + C = \ln|a| + C 2\ln|\frac{1 + \sin\frac {t}{2}}{\cos\frac {t}{2}}| + C = \ln|\frac{1 + \sin\frac {t}{2}}{\cos\frac {t}{2}}|^2 + C \ln|a|^2 = \ln|a^2| \ln|\frac{1 + \sin\frac {t}{2}}{\cos\frac {t}{2}}|^2 + C =|\frac{(1 + \sin\frac {t}{2})^2}{\cos^2\frac {t}{2}}| + C \ln|a| + C = \ln|a| + C \ln|\frac{(1 + \sin\frac {t}{2})^2}{\cos^2\frac {t}{2}}| + C = \ln|\frac{(1 + \sin\frac {t}{2})^2}{\cos^2\frac {t}{2}}| + C \ln|a| + C = \ln|a| + C \ln|\frac{(1 +\t}{2})^2}{\cos^2\frac {t}{2}}| + C = \ln|\frac{(1 + \sin\frac {t}{2})^2}{\cos^2\frac {t}{2}}| +