Домой
/
Физика
/
m=5 times 25 cdot 0^-3 mathrm(cr) v=ln 210^-3 mathrm(~h)^3 ( or ) 25600 mathrm(~m) / mathrm(c) p-?

Вопрос

m=5 times 25 cdot 0^-3 mathrm(cr) v=ln 210^-3 mathrm(~h)^3 ( or ) 25600 mathrm(~m) / mathrm(c) p-?

m=5 times 25 cdot 0^-3 mathrm(cr) v=ln 210^-3 mathrm(~h)^3 ( or ) 25600 mathrm(~m) / mathrm(c) p-?

Решения

4.2225 голоса
avatar
Валентин
Экспертная проверкаЭкспертная проверка
элита · Репетитор 8 лет

Отвечать

To find the pressure \( p \), we can use the ideal gas law equation:<br /><br />\[ pV = mRT \]<br /><br />where:<br />- \( p \) is the pressure,<br />- \( V \) is the volume,<br />- \( m \) is the mass,<br />- \( R \) is the specific gas constant,<br />- \( T \) is the temperature.<br /><br />Given:<br />- \( m = 5 \times 25 \cdot 0^{-3} \) cr<br />- \( V = \ln 210^{-3} \) h\(^3\)<br />- \( R = 25600 \) m/c<br /><br />We need to find \( T \) first. Assuming the temperature is in Kelvin, we can use the natural logarithm to find it.<br /><br />\[ T = \ln(210^{-3}) \]<br /><br />Now, we can substitute the values into the ideal gas law equation:<br /><br />\[ p \cdot \ln(210^{-3}) = 5 \times 25 \cdot 0^{-3} \cdot 25600 \]<br /><br />Solving for \( p \):<br /><br />\[ p = \frac{5 \times 25 \cdot 0^{-3} \cdot 25600}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{5 \times 25 \cdot 25600}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[ p = \frac{320000}{\ln(210^{-3})} \]<br /><br />\[
Поможет ли вам ответ? Оцените за это!