Домой
/
Физика
/
4. Calculate the medial value (average) of density: overrightarrow (p)=(overrightarrow (A))/(kx(y)^2)=(4)/(1.00cdot x.14)=2.821

Вопрос

4. Calculate the medial value (average) of density:
overrightarrow (p)=(overrightarrow (A))/(kx(y)^2)=(4)/(1.00cdot x.14)=2.821

4. Calculate the medial value (average) of density: overrightarrow (p)=(overrightarrow (A))/(kx(y)^2)=(4)/(1.00cdot x.14)=2.821

Решения

4.4164 голоса
avatar
Чеслава
Экспертная проверкаЭкспертная проверка
элита · Репетитор 8 лет

Отвечать

The medial value (average) of density is calculated by dividing the total density by the number of particles. In this case, the total density is represented by $\overrightarrow{A}$ and the number of particles is represented by $kx(y)^{2}$. By substituting the given values into the formula, we get:<br /><br />$\overrightarrow{p}=\frac{\overrightarrow{A}}{kx(y)^{2}}=\frac{4}{1.00\cdot x.14}=2.821$<br /><br />Therefore, the medial value (average) of density is 2.821.
Поможет ли вам ответ? Оцените за это!