Вопрос
Calculate the medial value (average) of density: bar (p)=(4bar (m))/(bar (h)cdot n(bar (D))^2)=(4times 70.809)/(1.021)times 3.14(3.348)^2=
Решения
4.2267 голоса
Чингиз
эксперт · Репетитор 3 летЭкспертная проверка
Отвечать
Let's go through the calculation step by step:<br /><br />1. Calculate the numerator:<br /> \[<br /> 4 \times 70.809 = 283.236<br /> \]<br /><br />2. Calculate the denominator:<br /> \[<br /> \bar{h} \cdot n(\bar{D})^2 = 1.021 \times 3.14 \times (3.348)^2<br /> \]<br /><br />3. Calculate \((3.348)^2\):<br /> \[<br /> (3.348)^2 = 11.218704<br /> \]<br /><br />4. Multiply the constants:<br /> \[<br /> 3.14 \times 11.218704 = 35.297<br /> \]<br /><br />5. Multiply by \(\bar{h}\):<br /> \[<br /> 1.021 \times 35.297 = 35.997<br /> \]<br /><br />6. Finally, divide the numerator by the denominator:<br /> \[<br /> \bar{p} = \frac{283.236}{35.997} \approx 7.89<br /> \]<br /><br />So, the medial value (average) of density \(\bar{p}\) is approximately \(7.89\).
Поможет ли вам ответ? Оцените за это!