Домой
/
Бизнес
/
6. Given the demand function as Q_(1)=b_(0)-b_(1)P Derive the Average Revenue and Marginal Revenue functions and compare the two (5 marks)

Вопрос

6. Given the demand function as
Q_(1)=b_(0)-b_(1)P
Derive the Average Revenue and Marginal Revenue functions and compare the two
(5 marks)

6. Given the demand function as Q_(1)=b_(0)-b_(1)P Derive the Average Revenue and Marginal Revenue functions and compare the two (5 marks)

Решения

4.2231 голоса
avatar
Дарья
Экспертная проверкаЭкспертная проверка
элита · Репетитор 8 лет

Отвечать

To derive the Average Revenue (AR) and Marginal Revenue (MR) functions from the given demand function \( Q_1 = b_0 - b_1P \), we need to follow these steps:<br /><br />1. **Determine the Total Revenue (TR) function:**<br /> - Total Revenue is calculated as the product of price (P) and quantity (Q).<br /> - Given \( Q_1 = b_0 - b_1P \), the Total Revenue function is:<br /> \[<br /> TR = P \times Q_1 = P \times (b_0 - b_1P)<br /> \]<br /> - Simplifying this, we get:<br /> \[<br /> TR = b_0P - b_1P^2<br /> \]<br /><br />2. **Derive the Average Revenue (AR) function:**<br /> - Average Revenue is the Total Revenue divided by the quantity.<br /> - Using the Total Revenue function \( TR = b_0P - b_1P^2 \), we have:<br /> \[<br /> AR = \frac{TR}{Q_1} = \frac{b_0P - b_1P^2}{b_0 - b_1P}<br /> \]<br /><br />3. **Derive the Marginal Revenue (MR) function:**<br /> - Marginal Revenue is the additional revenue from selling one more unit of the good.<br /> - To find MR, we take the derivative of the Total Revenue function with respect to quantity (Q).<br /> \[<br /> MR = \frac{d(TR)}{dQ_1}<br /> \]<br /> - Given \( TR = b_0P - b_1P^2 \), we need to express \( P \) in terms of \( Q_1 \). From the demand function \( Q_1 = b_0 - b_1P \), we solve for \( P \):<br /> \[<br /> P = \frac{b_0 - Q_1}{b_1}<br /> \]<br /> - Substitute \( P \) into the Total Revenue function:<br /> \[<br /> TR = b_0 \left(\frac{b_0 - Q_1}{b_1}\right) - b_1 \left(\frac{b_0 - Q_1}{b_1}\right)^2<br /> \]<br /> - Simplify the expression:<br /> \[<br /> TR = \frac{b_0^2 - b_0Q_1}{b_1} - \frac{b_1(b_0 - Q_1)^2}{b_1^2}<br /> \]<br /> \[<br /> TR = \frac{b_0^2 - b_0Q_1 - b_1(b_0 - Q_1)^2}{b_1}<br /> \]<br /> - Differentiate \( TR \) with respect to \( Q_1 \) to find \( MR \):<br /> \[<br /> MR = \frac{d}{dQ_1} \left( \frac{b_0^2 - b_0Q_1 - b_1(b_0 - Q_1)^2}{b_1} \right)<br /> \]<br /> \[<br /> MR = \frac{-b_0 - 2b_1(b_0 - Q_1)}{b_1}<br /> \]<br /> \[<br /> MR = \frac{-b_0 - 2b_1b_0 + 2b_1Q_1}{b_1}<br /> \]<br /> \[<br /> MR = \frac{2b_1Q_1 - 3b_0}{b_1}<br /> \]<br /> \[<br /> MR = \frac{2Q_1}{b_1} - 3<br /> \]<br /><br />4. **Compare Average Revenue (AR) and Marginal Revenue (MR):**<br /> - The Average Revenue function is:<br /> \[<br /> AR = \frac{b_0P - b_1P^2}{b_0 - b_1P}<br /> \]<br /> - The Marginal Revenue function is:<br /> \[<br /> MR = \frac{2Q_1}{b_1} - 3<br /> \]<br /> - To compare the two, we can express \( P \) in terms of \( Q_1 \) from the demand function:<br /> \[<br /> P = \frac{b_0 - Q_1}{b_1}<br /> \]<br /> - Substitute \( P \) into the AR function:<br /> \[<br /> AR = \frac{b_0 \left(\frac{b_0 - Q_1}{b_1}\right) - b_1 \left(\frac{b_0 - Q_1}{b_1}\right)^2}{b_0 - b_1 \left(\frac{b_0 - Q
Поможет ли вам ответ? Оцените за это!