Вопрос
Calculate the capa atance of two capaotos consivitin of two co.adions cylinder of inner iadius acin and puter radius 4 mathrm(~cm) . The spaco writhin the Ginder is filled with a substance of electrio. constand of 2. and the longth of the cylinder
Решения
4.3271 голоса
Мавра
мастер · Репетитор 5 летЭкспертная проверка
Отвечать
To calculate the capacitance of the given system, we need to find the capacitance of each capacitor and then add them together.<br /><br />The capacitance of a capacitor is given by the formula:<br /><br />\[ C = \frac{\varepsilon \cdot A}{d} \]<br /><br />where:<br />- \( C \) is the capacitance,<br />- \( \varepsilon \) is the permittivity of the substance,<br />- \( A \) is the area of the plates,<br />- \( d \) is the distance between the plates.<br /><br />In this case, we have two capacitors. The first capacitor is a solid cylinder with an inner radius of \( a \) cm and a outer radius of \( b \) cm. The second capacitor is a hollow cylinder with an inner radius of \( a \) cm and an outer radius of \( b \) cm.<br /><br />For the solid cylinder, the area of the plates is given by \( A = 2 \pi a h \), where \( h \) is the height of the cylinder. The distance between the plates is equal to the height of the cylinder, \( h \).<br /><br />For the hollow cylinder, the area of the plates is given by \( A = 2 \pi (b^2 - a^2) h \). The distance between the plates is equal to the height of the cylinder, \( h \).<br /><br />Substituting the given values into the formula, we can calculate the capacitance of each capacitor:<br /><br />For the solid cylinder:<br />\[ C_1 = \frac{\varepsilon \cdot 2 \pi a h}{h} = 2 \pi a \varepsilon \]<br /><br />For the hollow cylinder:<br />\[ C_2 = \frac{\varepsilon \cdot 2 \pi (b^2 - a^2) h}{h} = 2 \pi (b^2 - a^2) \varepsilon \]<br /><br />Finally, we add the capacitances of the two capacitors to get the total capacitance:<br /><br />\[ C_{\text{total}} = C_1 + C_2 = 2 \pi a \varepsilon + 2 \pi (b^2 - a^2) \varepsilon \]<br /><br />Simplifying the expression, we get:<br /><br />\[ C_{\text{total}} = 2 \pi \varepsilon (a + b^2 - a^2) \]<br /><br />Therefore, the capacitance of the given system is \( 2 \pi \varepsilon (a + b^2 - a^2) \).
Поможет ли вам ответ? Оцените за это!