Домой
/
Физика
/
QUESTION THREE (20 MARKS) a) Derive the work energy theorem b) A cylinder of mass 8 kg and radius 0.05m rolls without slipping so that the periodic time of its angular motion is 0.2 Seconds. Calculate: i Angular velocity (2 Marks) ii Linear speed (2 Marks) iii. Translational kinetic energy (3 Marks) iv. Rotational Kinetic energy (5 Marks) (8 Marks)

Вопрос

QUESTION THREE (20 MARKS)
a) Derive the work energy theorem
b) A cylinder of mass 8 kg and radius 0.05m rolls without slipping so that the periodic time of
its angular motion is 0.2 Seconds. Calculate:
i Angular velocity
(2 Marks)
ii Linear speed
(2 Marks)
iii. Translational kinetic energy
(3 Marks)
iv. Rotational Kinetic energy
(5 Marks)
(8 Marks)

QUESTION THREE (20 MARKS) a) Derive the work energy theorem b) A cylinder of mass 8 kg and radius 0.05m rolls without slipping so that the periodic time of its angular motion is 0.2 Seconds. Calculate: i Angular velocity (2 Marks) ii Linear speed (2 Marks) iii. Translational kinetic energy (3 Marks) iv. Rotational Kinetic energy (5 Marks) (8 Marks)

Решения

4.1234 голоса
avatar
Валентина
Экспертная проверкаЭкспертная проверка
мастер · Репетитор 5 лет

Отвечать

a) The work-energy theorem states that the work done on an object is equal to the its kinetic energy. Mathematically, it can be expressed as:<br /><br />\[ W = \Delta K \]<br /><br />where \( W \) is the work done and \( \Delta K \) is the change in kinetic energy.<br /><br />b) i. **Angular velocity (ω):**<br /><br />The angular velocity can be calculated using the formula:<br /><br />\[ \omega = \frac{2\pi}{T} \]<br /><br />where \( T \) is the periodic time. Given \( T = 0.2 \) seconds:<br /><br />\[ \omega = \frac{2\pi}{0.2} = 10\pi \, \text{rad/s} \]<br /><br />ii. **Linear speed (v):**<br /><br />The linear speed \( v \) is related to the angular velocity \( \omega \) by the formula:<br /><br />\[ v = \omega r \]<br /><br />Given \( r = 0.05 \) m and \( \omega = 10\pi \, \text{rad/s} \):<br /><br />\[ v = 10\pi \times 0.05 = 0.5\pi \, \text{m/s} \]<br /><br />iii. **Translational kinetic energy (K_trans):**<br /><br />The translational kinetic energy is given by:<br /><br />\[ K_{\text{trans}} = \frac{1}{2}mv^2 \]<br /><br />Given \( m = 8 \) kg and \( v = 0.5\pi \, \text{m/s} \):<br /><br />\[ K_{\text{trans}} = \frac{1}{2} \times 8 \times (0.5\pi)^2 = 2 \times 0.25\pi^2 = 0.5\pi^2 \, \text{J} \]<br /><br />iv. **Rotational kinetic energy (K_rot):**<br /><br />The rotational kinetic energy is given by:<br /><br />\[ K_{\text{rot}} = \frac{1}{2}I\omega^2 \]<br /><br />For a cylinder, the moment of inertia \( I \) is:<br /><br />\[ I = \frac{1}{2}mr^2 \]<br /><br />Given \( m = 8 \) kg, \( r = 0.05 \) m, and \( \omega = 10\pi \, \text{rad/s} \):<br /><br />\[ I = \frac{1}{2} \times 8 \times (0.05)^2 = 0.5 \times 8 \times 0.0025 = 0.01 \, \text{kg·m}^2 \]<br /><br />Thus,<br /><br />\[ K_{\text{rot}} = \frac{1}{2} \times 0.01 \times (10\pi)^2 = 0.005 \times 100\pi^2 = 0.5\pi^2 \, \text{J} \]
Поможет ли вам ответ? Оцените за это!