Вопрос
5. There is carbon dioxide at pressure p_(1)=6 bar and temperature t_(1)=527^circ C in a tank of vol- ume V=0.5m^3 . How will the temperature of the gas change if 436 kJ of heat are removed from it at constant volume?
Решения
4.5134 голоса
Стелла
профессионал · Репетитор 6 летЭкспертная проверка
Отвечать
To solve this problem, we can use the first law of thermodynamics, which states that the change in internal energy of a system is equal to the heat added to the system minus the work done by the system.<br /><br />Given:<br />- Initial pressure, $p_{1}=6$ bar<br />- Initial temperature, $t_{1}=527^{\circ }C$<br />- Volume, $V=0.5m^{3}$<br />- Heat removed, $Q=-436$ kJ (negative because heat is removed)<br /><br />We need to find the final temperature, $t_{2}$.<br /><br />First, let's convert the initial temperature to Kelvin:<br />$t_{1} = 527^{\circ }C + 273.15 = 800.15 K$<br /><br />Next, we can use the ideal gas law to find the initial number of moles of the gas:<br />$p_{1}V = nRT_{1}$<br />$n = \frac{p_{1}V}{RT_{1}}$<br /><br />Now, we can use the first law of thermodynamics to find the change in internal energy:<br />$\Delta U = Q - W$<br />Since the volume is constant, $W = 0$, so $\Delta U = Q$<br /><br />The change in internal energy can also be expressed as:<br />$\Delta U = nC_{v}\Delta T$<br />where $C_{v}$ is the molar specific heat capacity at constant volume.<br /><br />Substituting the values, we get:<br />$nC_{v}\Delta T = -436 kJ$<br /><br />Now, we can solve for the change in temperature:<br />$\Delta T = \frac{-436 kJ}{nC_{v}}$<br /><br />Finally, we can find the final temperature:<br />$t_{2} = t_{1} + \Delta T$<br /><br />Note: The specific heat capacity, $C_{v}$, depends on the gas in question. For an ideal monatomic gas, $C_{v} = \frac{3}{2}R$, where $R$ is the universal gas constant. For an ideal diatomic gas, $C_{v} = \frac{5}{2}R$.
Поможет ли вам ответ? Оцените за это!