Вопрос
Calculate the medial value (average) of density: bar (p)=(4bar (m))/(bar (k)ast (bar (D))^2)=(4times 1.406)/(1.15times 3.14times (1.19)^2)
Решения
4.3284 голоса
Гаврила
ветеран · Репетитор 9 летЭкспертная проверка
Отвечать
Let's go through the calculation step by step:<br /><br />Given:<br />\[<br />\bar{p} = \frac{4 \times 1.406}{1.15 \times 3.14 \times (1.19)^2}<br />\]<br /><br />First, calculate the denominator:<br />\[<br />1.15 \times 3.14 \times (1.19)^2<br />\]<br /><br />Calculate \((1.19)^2\):<br />\[<br />(1.19)^2 = 1.4161<br />\]<br /><br />Now multiply the constants:<br />\[<br />1.15 \times 3.14 = 3.621<br />\]<br /><br />Then multiply by \((1.19)^2\):<br />\[<br />3.621 \times 1.4161 = 5.104<br />\]<br /><br />Now, calculate the numerator:<br />\[<br />4 \times 1.406 = 5.624<br />\]<br /><br />Finally, divide the numerator by the denominator:<br />\[<br />\bar{p} = \frac{5.624}{5.104} \approx 1.104<br />\]<br /><br />So, the medial value (average) of density \(\bar{p}\) is approximately:<br />\[<br />\bar{p} \approx 1.104<br />\]
Поможет ли вам ответ? Оцените за это!