Вопрос
1. What mass (g) of sulfuric acid must be taken to prepare 250 ml of 2 N solution? 2. For a complex compound [Cu(NH_(3))_(4)]Cl_(2) indicate the outer and inner spheres, central ion, its charge and coordinate number, ligands and there dentation. Name the compound. 3. Finish and balance the redox-reaction MnSO_(4)+NaBiO_(3)+HNO_(3)= 4. Calculate the mass of Ag^+ in 0.1 M solution of diamine silver chloride containing an excess of 1 mole of NH_(3)cdot (K_(inst)=9.3cdot 10^-8) Evnlain if FeCl_(2) can be oxidized by H_(2)O_(2) in acidic media?
Решения
4.5188 голоса
Юлиан
элита · Репетитор 8 летЭкспертная проверка
Отвечать
1. To prepare a 2 N solution of sulfuric acid (H2SO4) in 250 ml, you need to calculate the mass of H2SO4 required. Normality (N) is defined as the number of equivalents of solute per liter of solution. For H2SO4, the equivalent weight is 49.04 g/mol (since it provides 2 H+ ions per molecule). Therefore, the mass of H2SO4 needed is:<br /><br />\[ \text{Mass} = \text{Normality} \times \text{Volume} \times \text{Equivalent weight} \]<br /><br />\[ \text{Mass} = 2 \, \text{N} \times 0.250 \, \text{L} \times 49.04 \, \text{g/mol} \]<br /><br />\[ \text{Mass} = 24.52 \, \text{g} \]<br /><br />So, 24.52 grams of sulfuric acid must be taken to prepare 250 ml of a 2 N solution.<br /><br />2. For the complex compound $[Cu(NH_{3})_{4}]Cl_{2}$:<br />- Outer sphere: $[Cu(NH_{3})_{4}]^{2+}$ and $2Cl^{-}$<br />- Inner sphere: $[Cu(NH_{3})_{4}]^{2+}$<br />- Central ion: Cu<br />- Charge: +2<br />- Coordinate number: 4<br />- Ligands: NH3<br />- Dentation: Tetrahedral<br /><br />The compound is named Tetrakis(ammine)copper(II) chloride.<br /><br />3. The balanced redox reaction between $MnSO_{4}$ and $NaBiO_{3}$ in the presence of $HNO_{3}$ is:<br /><br />\[ 3MnSO_{4} + 2NaBiO_{3} + 14HNO_{3} \rightarrow 3Mn(NO_{3})_{2} + 2Bi(NO_{3})_{3} + 2NaSO_{4} + 4H_{2}O \]<br /><br />4. To calculate the mass of $Ag^{+}$ in a 0.1 M solution of diamine silver chloride ($[Ag(NH_{3})_{2}]Cl$) containing an excess of 1 mole of $NH_{3}$, we need to consider the solubility product constant ($K_{inst}$) for $AgCl$.<br /><br />The solubility product constant for $AgCl$ is $K_{sp} = 1.8 \times 10^{-10}$.<br /><br />The dissociation of $[Ag(NH_{3})_{2}]Cl$ in water can be represented as:<br /><br />\[ [Ag(NH_{3})_{2}]Cl \rightarrow Ag^{+} + 2NH_{3} + Cl^{-} \]<br /><br />Given that the concentration of $NH_{3}$ is in excess, the concentration of $Ag^{+}$ will be equal to the concentration of $Cl^{-}$.<br /><br />Let the concentration of $Ag^{+}$ be $x$. Then, the concentration of $Cl^{-}$ will also be $x$.<br /><br />The solubility product constant expression for $AgCl$ is:<br /><br />\[ K_{sp} = [Ag^{+}][Cl^{-}] = x^2 \]<br /><br />\[ 1.8 \times 10^{-10} = x^2 \]<br /><br />\[ x = \sqrt{1.8 \times 10^{-10}} \]<br /><br />\[ x = 1.34 \times 10^{-5} \, \text{M} \]<br /><br />Now, to find the mass of $Ag^{+}$, we multiply the concentration by the molar mass of $Ag$:<br /><br />\[ \text{Mass} = \text{Concentration} \times \text{Molar mass of Ag} \]<br /><br />\[ \text{Mass} = 1.34 \times 10^{-5} \, \text{M} \times 107.87 \, \text{g/mol} \]<br /><br />\[ \text{Mass} = 1.44 \times 10^{-3} \, \text{g} \]<br /><br />So, the mass of $Ag^{+}$ in the solution is $1.44 \times 10^{-3}$ grams.<br /><br />Regarding the oxidation of $FeCl_{2}$ by $H_{2}O_{2}$ in acidic media, we need to consider the standard reduction potentials of the involved species. The standard reduction potential for $Fe^{2+}/Fe^{3+}$ is +0.77 V, while for $H_{2}O_{2}/H_{2}O$ it is +1.77 V. Since the reduction potential of $H_{2}O_{2}$ is higher than that of $Fe^{2+}$, $H_{2}O_{2}$
Поможет ли вам ответ? Оцените за это!