Домой
/
Математика
/
TO CALCULATE THE INTERVAL ESTIMATE OF THE MATH EMICAL EXPECTATION OF THE GENERAL POPULATION WITH A KNOWN VARIANCE . THE QUANTIL . OF THE NORMAL . DISTRIBUTION ua WE FIND IN THE TABLE OF VALUES OF THE LAPLACE FUNCTION I FROM THE CONDITION Select one: Phi (u_(alpha ))=1-alpha Phi (u_(alpha ))=(alpha )/(2) Phi (u_(alpha ))=alpha

Вопрос

TO CALCULATE THE INTERVAL
ESTIMATE OF THE MATH EMICAL
EXPECTATION OF THE GENERAL
POPULATION WITH A KNOWN
VARIANCE . THE QUANTIL . OF
THE NORMAL . DISTRIBUTION ua
WE FIND IN THE TABLE OF
VALUES OF THE LAPLACE
FUNCTION I FROM THE
CONDITION
Select one:
Phi (u_(alpha ))=1-alpha 
Phi (u_(alpha ))=(alpha )/(2)
Phi (u_(alpha ))=alpha

TO CALCULATE THE INTERVAL ESTIMATE OF THE MATH EMICAL EXPECTATION OF THE GENERAL POPULATION WITH A KNOWN VARIANCE . THE QUANTIL . OF THE NORMAL . DISTRIBUTION ua WE FIND IN THE TABLE OF VALUES OF THE LAPLACE FUNCTION I FROM THE CONDITION Select one: Phi (u_(alpha ))=1-alpha Phi (u_(alpha ))=(alpha )/(2) Phi (u_(alpha ))=alpha

Решения

4.1308 голоса
avatar
Цецилия
Экспертная проверкаЭкспертная проверка
мастер · Репетитор 5 лет

Отвечать

The correct answer is: $\Phi (u_{\alpha })=1-\alpha $<br /><br />Explanation: The interval estimate of the mathematical expectation of the general population with a known variance can be calculated using the quantile of the normal distribution, denoted as $u_{\alpha}$. The quantile of the normal distribution can be found using the table of values of the Laplace function, denoted as $\Phi(u_{\alpha})$. The relationship between the quantile and the level of significance $\alpha$ is given by $\Phi(u_{\alpha}) = 1 - \alpha$. Therefore, the correct answer is $\Phi(u_{\alpha}) = 1 - \alpha$.
Поможет ли вам ответ? Оцените за это!