Вопрос
2. Bbluncnutb a) (10^-5cdot 10^7)/(10^-3)cdot (10^(3)4)
Решения
4.6154 голоса
Юзефа
эксперт · Репетитор 3 летЭкспертная проверка
Отвечать
To solve the expression $\frac {10^{-5}\cdot 10^{7}}{10^{-3}\cdot (10^{3})4}$, we can simplify it step by step.<br /><br />First, let's simplify the numerator:<br />$10^{-5} \cdot 10^{7} = 10^{-5+7} = 10^{2}$<br /><br />Next, let's simplify the denominator:<br />$10^{-3} \cdot (10^{3})4 = 10^{-3+3} \cdot 4 = 10^{0} \cdot 4 = 4$<br /><br />Now, we can rewrite the expression as:<br />$\frac {10^{2}}{4}$<br /><br />To simplify this further, we can divide both the numerator and denominator by 4:<br />$\frac {10^{2}}{4} = \frac {100}{4} = 25$<br /><br />Therefore, the simplified expression is 25.
Поможет ли вам ответ? Оцените за это!