Домой
/
Математика
/
FORMULA FOR CALCULATING THE AVERAGE bar (x) IN THE EQUATION OF THE LINEAR SMOOTHING FUNCTION hat (y)=alpha _(0)+alpha _(1)x BY THE METHOD OF LEAST SQUARES Select one: =(1)/(n)sum _(i=1)^nx_(i)^2 =sum _(i=1)^nx_(i) =(1)/(n)sum _(i=1)^nx_(i)y_(i) =(1)/(n)sum _(i=1)^ny_(i) D =(1)/(n)sum _(i=1)^nx_(i)

Вопрос

FORMULA FOR CALCULATING
THE AVERAGE bar (x) IN THE
EQUATION OF THE LINEAR
SMOOTHING FUNCTION
hat (y)=alpha _(0)+alpha _(1)x BY THE METHOD
OF LEAST SQUARES
Select one:
=(1)/(n)sum _(i=1)^nx_(i)^2
=sum _(i=1)^nx_(i)
=(1)/(n)sum _(i=1)^nx_(i)y_(i)
=(1)/(n)sum _(i=1)^ny_(i)
D
=(1)/(n)sum _(i=1)^nx_(i)

FORMULA FOR CALCULATING THE AVERAGE bar (x) IN THE EQUATION OF THE LINEAR SMOOTHING FUNCTION hat (y)=alpha _(0)+alpha _(1)x BY THE METHOD OF LEAST SQUARES Select one: =(1)/(n)sum _(i=1)^nx_(i)^2 =sum _(i=1)^nx_(i) =(1)/(n)sum _(i=1)^nx_(i)y_(i) =(1)/(n)sum _(i=1)^ny_(i) D =(1)/(n)sum _(i=1)^nx_(i)

Решения

3.9293 голоса
avatar
Юзефа
Экспертная проверкаЭкспертная проверка
элита · Репетитор 8 лет

Отвечать

The correct answer is1}{n}\sum _{i=1}^{n}x_{i}$<br /><br />Explanation:<br />In the equation of the linear smoothing function $\hat {y}=\alpha _{0}+\alpha _{1}x$, the average $\bar {x}$ is calculated as the mean of the values of $x$. The formula for calculating the average $\bar {x}$ is $\frac {1}{n}\sum _{i=1}^{n}x_{i}$, where $n$ is the number of data points and $x_{i}$ represents the values of $x$.
Поможет ли вам ответ? Оцените за это!