Домой
/
Математика
/
1. Haǎm 0)3 Q YHKLIHH f(x)=(2x^2+3)/(x-sqrt (x^2)-4)

Вопрос

1. Haǎm 0)3 Q YHKLIHH f(x)=(2x^2+3)/(x-sqrt (x^2)-4)

1. Haǎm 0)3 Q YHKLIHH f(x)=(2x^2+3)/(x-sqrt (x^2)-4)

Решения

4.4312 голоса
avatar
Галина
Экспертная проверкаЭкспертная проверка
мастер · Репетитор 5 лет

Отвечать

To find the limit of the given function as x approaches 2, we can use the following steps:<br /><br />1. Substitute x = 2 into the function:<br /> f(2) = (2(2)^2 + 3) / (2 - √(2^2 - 4))<br /> = (8 + 3) / (2 - √(4 - 4))<br /> = 11 / (2 - 0)<br /> = 11 / 2<br /><br />2. Since the denominator is not equal to zero, the function is defined at x = 2.<br /><br />3. Therefore, the limit of the function as x approaches 2 is:<br /> lim(x→2) f(x) = 11/2<br /><br />So, the correct answer is 11/2.
Поможет ли вам ответ? Оцените за это!