Вопрос
b. IIprBecTH ApO6H K 3RaMeHaremo. a) (1)/(4)和(1)/(3) i __ 6) (1)/(5)x(1)/(6) __ B) (1)/(7)和(1)/(9) __ r) (2)/(3),(5)/(6)和(7)/(12) ; __ A) (4)/(3),(5)/(8) (11)/(16) __ e) (1)/(6),(7)/(8)和(2)/(5) ; __ pi (8)/(25) - __
Решения
4.6365 голоса
Цезарь
эксперт · Репетитор 3 летЭкспертная проверка
Отвечать
Let's correct and complete the answers for each part:<br /><br />a) $\frac{1}{4}$ and $\frac{1}{3}$<br /><br />To compare $\frac{1}{4}$ and $\frac{1}{3}$, we can find a common denominator. The least common multiple of 4 and 3 is 12. So, we can rewrite the fractions as:<br /><br />$\frac{1}{4} = \frac{3}{12}$<br />$\frac{1}{3} = \frac{4}{12}$<br /><br />Since $\frac{3}{12} < \frac{4}{12}$, we have $\frac{1}{4} < \frac{1}{3}$.<br /><br />b) $\frac{1}{5} \times \frac{1}{6}$<br /><br />To multiply fractions, we simply multiply the numerators and the denominators:<br /><br />$\frac{1}{5} \times \frac{1}{6} = \frac{1 \times 1}{5 \times 6} = \frac{1}{30}$<br /><br />c) $\frac{1}{7}$ and $\frac{1}{9}$<br /><br />To compare $\frac{1}{7}$ and $\frac{1}{9}$, we can find a common denominator. The least common multiple of 7 and 9 is 63. So, we can rewrite the fractions as:<br /><br />$\frac{1}{7} = \frac{9}{63}$<br />$\frac{1}{9} = \frac{7}{63}$<br /><br />Since $\frac{9}{63} > \frac{7}{63}$, we have $\frac{1}{7} > \frac{1}{9}$.<br /><br />d) $\frac{2}{3}, \frac{5}{6}, \frac{7}{12}$<br /><br />To compare these fractions, we can find a common denominator. The least common multiple of 3, 6, and 12 is 12. So, we can rewrite the fractions as:<br /><br />$\frac{2}{3} = \frac{8}{12}$<br />$\frac{5}{6} = \frac{10}{12}$<br />$\frac{7}{12} = \frac{7}{12}$<br /><br />Since $\frac{8}{12} < \frac{10}{12}$ and $\frac{10}{12} > \frac{7}{12}$, we have $\frac{2}{3} < \frac{5}{6} > \frac{7}{12}$.<br /><br />e) $\frac{4}{3}, \frac{5}{8}, \frac{11}{16}$<br /><br />To compare these fractions, we can find a common denominator. The least common multiple of 3, 8, and 16 is 48. So, we can rewrite the fractions as:<br /><br />$\frac{4}{3} = \frac{64}{48}$<br />$\frac{5}{8} = \frac{30}{48}$<br />$\frac{11}{16} = \frac{33}{48}$<br /><br />Since $\frac{64}{48} > \frac{33}{48}$ and $\frac{33}{48} > \frac{30}{48}$, we have $\frac{4}{3} > \frac{11}{16} > \frac{5}{8}$.<br /><br />f) $\frac{1}{6}, \frac{7}{8}, \frac{2}{5}$<br /><br />To compare these fractions, we can find a common denominator. The least common multiple of 6, 8, and 5 is 120. So, we can rewrite the fractions as:<br /><br />$\frac{1}{6} = \frac{20}{120}$<br />$\frac{7}{8} = \frac{105}{120}$<br />$\frac{2}{5} = \frac{48}{120}$<br /><br />Since $\frac{105}{120} > \frac{48}{120}$ and $\frac{48}{120} > \frac{20}{120}$, we have $\frac{7}{8} > \frac{2}{5} > \frac{1}{6}$.<br /><br />g) $\frac{3}{5}, \frac{7}{15}, \pi \frac{8}{25}$<br /><br />To compare these fractions, we can find a common denominator. The least common multiple of 5, 15, and 25 is 75. So, we can rewrite the fractions as:<br /><br />$\frac{3}{5} = \frac{45}{75}$<br />$\frac{7}{15} = \frac{35}{75}$<br />$\pi \frac{8}{25} = \frac{24}{75}$<br /><br />Since $\frac{45}{75} > \frac{35}{75}$ and $\frac{35}{75} > \frac{24}{75}$, we have $\frac{3}{5} > \frac{7
Поможет ли вам ответ? Оцените за это!