Домой
/
Математика
/
THE CORRELATION DEPENDENCE : OF X ON Y CAN BE DESCRIBED USING AN EQUATION OF : THE FORM Select one: M(Xvert _(y))=f(y) overline (y_(x))=f^ast (x) M(Yvert _(x))=f(x) M(Xvert _(y))=f(x) bar (x)_(y)=varphi ^ast (y)

Вопрос

THE CORRELATION DEPENDENCE : OF X ON
Y CAN BE DESCRIBED USING AN
EQUATION OF : THE FORM
Select one:
M(Xvert _(y))=f(y)
overline (y_(x))=f^ast (x)
M(Yvert _(x))=f(x)
M(Xvert _(y))=f(x)
bar (x)_(y)=varphi ^ast (y)

THE CORRELATION DEPENDENCE : OF X ON Y CAN BE DESCRIBED USING AN EQUATION OF : THE FORM Select one: M(Xvert _(y))=f(y) overline (y_(x))=f^ast (x) M(Yvert _(x))=f(x) M(Xvert _(y))=f(x) bar (x)_(y)=varphi ^ast (y)

Решения

4.7254 голоса
avatar
Еремей
Экспертная проверкаЭкспертная проверка
элита · Репетитор 8 лет

Отвечать

The correct answer is: $M(X\vert _{y})=f(y)$<br /><br />Explanation: The correlation dependence of X on Y can be described using the conditional mean of X given Y, which is represented by the equation $M(X\vert _{y})=f(y)$. This equation indicates that the mean value of X is a function of Y, which describes the correlation dependence of X on Y.
Поможет ли вам ответ? Оцените за это!