Домой
/
Математика
/
lim _(x arrow 202 u)-((1)/(x-202 u)-(1)/(|x-202 u|))

Вопрос

lim _(x arrow 202 u)-((1)/(x-202 u)-(1)/(|x-202 u|))

lim _(x arrow 202 u)-((1)/(x-202 u)-(1)/(|x-202 u|))

Решения

4.2249 голоса
avatar
Венера
Экспертная проверкаЭкспертная проверка
профессионал · Репетитор 6 лет

Отвечать

To evaluate the limit \( \lim_{x \rightarrow 202u} -\left(\frac{1}{x-202u} - \frac{1}{|x-202u|}\right) \), let's analyze the expression inside the limit.<br /><br />First, consider the expression \( \frac{1}{x-202u} - \frac{1}{|x-202u|} \).<br /><br />When \( x \) approaches \( 202u \) from the right (i.e., \( x \to 202u^+ \)), \( x - 202u \) is positive, so \( |x - 202u| = x - 202u \). Thus, the expression becomes:<br />\[ \frac{1}{x-202u} - \frac{1}{x-202u} = 0 \]<br /><br />When \( x \) approaches \( 202u \) from the left (i.e., \( x \to 202u^- \)), \( x - 202u \) is negative, so \( |x - 202u| = -(x - 202u) \). Thus, the expression becomes:<br />\[ \frac{1}{x-202u} - \frac{1}{-(x-202u)} = \frac{1}{x-202u} + \frac{1}{x-202u} = \frac{2}{x-202u} \]<br /><br />Now, we need to evaluate the limit of the negative of this expression as \( x \) approaches \( 202u \):<br />\[ \lim_{x \to 202u} -\left(\frac{1}{x-202u} - \frac{1}{|x-202u|}\right) \]<br /><br />From the above analysis, we see that:<br />- When \( x \to 202u^+ \), the expression is \( 0 \).<br />- When \( x \to 202u^- \), the expression is \( -\frac{2}{x-202u} \).<br /><br />Since the limit from the left and the right do not match, the limit does not exist in this case. Therefore, the limit is undefined.
Поможет ли вам ответ? Оцените за это!