Домой
/
Математика
/
int sqrt((3-2 x^1))/(2 x-7) d x

Вопрос

int sqrt((3-2 x^1))/(2 x-7) d x

int sqrt((3-2 x^1))/(2 x-7) d x

Решения

4.6274 голоса
avatar
Нея
Экспертная проверкаЭкспертная проверка
ветеран · Репетитор 11 лет

Отвечать

Для решения данного интеграла, мы можем использовать замену переменной. Пусть \( u = 2x - 7 \), тогда \( du = 2dx \) и \( dx = \frac{du}{2} \). Подставляя это в интеграл, получаем:<br /><br />\[ \int \sqrt{\frac{3-2x}{2x-7}} dx = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{du}{2} \]<br /><br />\[ = \int \sqrt{\frac{3-2x}{u}} \cdot \frac{
Поможет ли вам ответ? Оцените за это!