Вопрос
1. CocraBHTb KaHOHHUeCKHC ypaBHeHH9: 6) rHIRep60/1b!; B)mapa60:1bl (A, B - 1 OUKH, JIeXKaIIIHe Hà KpHBoii, F - pokyc,a- 60.16mas (TeúcrB HTeJIbH an) norry. ocb, b-Maian (MHHMan) no-nyocb e-3KCuCHTpHCHTeT, y=+kx - ypanHeH HA aCHMTTOT runcp6o.III, D - AH. peKTpHca KpHBOã, 2c __ (pokychoe paccronmHe). 1.26. a) b=7,F(13,0) ; 6) b=4,F(-11,0) ; B) D: x=13.
Решения
4.5305 голоса
Ираклий
элита · Репетитор 8 летЭкспертная проверка
Отвечать
Для решения этой задачи нам нужно найти уравнение прямой, проходящей через точку \( F(13,0) \) и параллельной прямой \( y = +kx \).<br /><br />Поскольку прямая параллельна \( y = +kx \), то она также будет иметь вид \( y = kx \), где \( k \) - коэффициент наклона.<br /><br />Так как прямая проходит через точку \( F(13,0) \), то подставим координаты этой точки в уравнение прямой:<br /><br />\( 0 = k \cdot 13 \)<br /><br />Отсюда получаем, что \( k = 0 \).<br /><br />Таким образом, уравнение прямой, проходящей через точку \( F(13,0) \) и параллельной прямой \( y = +kx \), будет \( y = 0 \).<br /><br />Ответ: \( y = 0 \).
Поможет ли вам ответ? Оцените за это!