Вопрос
HaHue 2 Peunte ypaBHeHue x^4=(2x-24)^2
Решения
4.3274 голоса
Татьяна
мастер · Репетитор 5 летЭкспертная проверка
Отвечать
To solve the equation $x^{4}=(2x-24)^{2}$, we can start by expanding the right side of the equation:<br /><br />$(2x-24)^{2} = 4x^{2} - 96x + 576$<br /><br />Now, we can equate the left side of the equation to the expanded right side:<br /><br />$x^{4} = 4x^{2} - 96x + 576$<br /><br />To solve this equation, we can rearrange it to form a quadratic equation by substituting $y = x^2$:<br /><br />$y^2 = 4y - 96x + 576$<br /><br />$y^2 - 4y + 96x - 576 = 0$<br /><br />Now, we can solve this quadratic equation using the quadratic formula:<br /><br />$y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$<br /><br />In this case, $a = 1$, $b = -4$, and $c = 96x - 576$. Substituting these values into the quadratic formula, we get:<br /><br />$y = \frac{4 \pm \sqrt{16 - 4(96x - 576)}}{2}$<br /><br />Simplifying further, we have:<br /><br />$y = \frac{4 \pm \sqrt{16 - 384x + 2304}}{2}$<br /><br />$y = \frac{4 \pm \sqrt{2320 - 384x}}{2}$<br /><br />Now, we can substitute $y = x^2$ back into the equation:<br /><br />$x^2 = \frac{4 \pm \sqrt{2320 - 384x}}{2}$<br /><br />To find the values of $x$, we need to solve this equation. However, it is a transcendental equation and cannot be solved algebraically. We can use numerical methods such as the Newton-Raphson method or the bisection method to approximate the solutions.<br /><br />Using a numerical method, we find that the solutions to the equation are approximately:<br /><br />$x \approx 6$ or $x \approx -6$<br /><br />Therefore, the solutions to the equation $x^{4}=(2x-24)^{2}$ are $x \approx 6$ or $x \approx -6$.
Поможет ли вам ответ? Оцените за это!