Домой
/
Математика
/
THE NUMBER OF DEGREES OF FREEDOM FOR CALCUL ATING THE CRITICAL VALUE OF THE PEARSON CRITERION, IF THE NUMBER OF INTERVALS 8 . THE NUMBER OF UNKNOWN DISTRIBUTION PARAMETERS 2. THE SAMPLE : VOLUME 60 IS EQUAL TO Select one: 5 52 6 58 7

Вопрос

THE NUMBER OF DEGREES OF FREEDOM
FOR CALCUL ATING THE CRITICAL VALUE
OF THE PEARSON CRITERION, IF THE
NUMBER OF INTERVALS 8 . THE NUMBER
OF UNKNOWN DISTRIBUTION
PARAMETERS 2. THE SAMPLE : VOLUME 60
IS EQUAL TO
Select one:
5
52
6
58
7

THE NUMBER OF DEGREES OF FREEDOM FOR CALCUL ATING THE CRITICAL VALUE OF THE PEARSON CRITERION, IF THE NUMBER OF INTERVALS 8 . THE NUMBER OF UNKNOWN DISTRIBUTION PARAMETERS 2. THE SAMPLE : VOLUME 60 IS EQUAL TO Select one: 5 52 6 58 7

Решения

4.7235 голоса
avatar
Ядвига
Экспертная проверкаЭкспертная проверка
элита · Репетитор 8 лет

Отвечать

The correct answer is 52.<br /><br />The number of degrees of freedom for calculating the critical value of the Pearson criterion is determined by the formula:<br /><br />Degrees of freedom = Number of intervals - Number of unknown distribution parameters - 1<br /><br />In this case, the number of intervals is 8, the number of unknown distribution parameters is 2, and the sample volume is 60.<br /><br />Plugging these values into the formula, we get:<br /><br />Degrees of freedom = 8 - 2 - 1 = 5<br /><br />However, the question asks for the number of degrees of freedom, not the degrees of freedom itself. To find the number of degrees of freedom, we need to add 1 to the degrees of freedom:<br /><br />Number of degrees of freedom = Degrees of freedom + 1 = 5 + 1 = 6<br /><br />Therefore, the correct answer is 6.
Поможет ли вам ответ? Оцените за это!