Домой
/
Математика
/
VARIANCE OF THE VARIABLE x DISTRIBUTED ACCORDING T EXPONENTIAL LAW f(x)= ) 2e^-2x,&xgeqslant 0 0,&xlt 0 IS Select one: 1/2 -1/2 (Ln2)/2 1/4 -1/4

Вопрос

VARIANCE OF THE VARIABLE x
DISTRIBUTED ACCORDING T
EXPONENTIAL LAW
f(x)= ) 2e^-2x,&xgeqslant 0 0,&xlt 0  IS
Select one:
1/2
-1/2
(Ln2)/2
1/4
-1/4

VARIANCE OF THE VARIABLE x DISTRIBUTED ACCORDING T EXPONENTIAL LAW f(x)= ) 2e^-2x,&xgeqslant 0 0,&xlt 0 IS Select one: 1/2 -1/2 (Ln2)/2 1/4 -1/4

Решения

4.2173 голоса
avatar
Федосей
Экспертная проверкаЭкспертная проверка
профессионал · Репетитор 6 лет

Отвечать

To find the variance of the random variable X, we need to first find the mean (expected value) of X, denoted as μ, and then use the formula for variance:<br /><br />Var(X) = E(X^2) - [E(X)]^2<br /><br />where E(X^2) is the expected value of X^2 and [E(X)]^2 is the square of the mean.<br /><br />Given the probability density function (pdf) of X:<br /><br />f(x) = { 2e^(-2x), x ≥ 0<br />0, x < 0<br /><br />we can find the mean by integrating the product of x and f(x) over the entire range of X:<br /><br />μ = ∫(x * f(x)) dx<br /><br />Integrating from 0 to ∞:<br /><br />μ = ∫(x * 2e^(-2x)) dx<br /><br />Let u = -2x, then du = -2 dx, and when x = 0, u = 0, and when x = ∞, u = -∞.<br /><br />μ = ∫(u/2 * 2e^u) du<br /><br />Integrating by parts:<br /><br />μ = [u * e^u]_(-∞)^0 - ∫(e^u) du<br /><br />μ = 0 - [e^u]_(-∞)^0<br /><br />μ = -1<br /><br />Now, we can find E(X^2) by integrating the product of x^2 and f(x entire range of X:<br /><br />E(X^2) = ∫(x^2 * f(x)) dx<br /><br />Integrating from 0 to ∞:<br /><br />E(X^2) = ∫(x^2 * 2e^(-2x)) dx<br /><br />Let u = -2x, then du = -2 dx, and when x = 0, u = 0, and when x = ∞, u = -∞.<br /><br />E(X^2) = ∫(u^2/4 * 2e^u) du<br /><br />Integrating by parts:<br /><br />E(X^2) = [u^2/8 * e^u]_(-∞)^0 - ∫(u/4 * e^u) du<br /><br />E(X^2) = 0 - [u^2/8 * e^u]_(-∞)^0 + ∫(u/4 * e^u) du<br /><br />E(X^2) = 0 - [u^2/8 * e^u]_(-∞)^0 + [u/8 * e^u]_(-∞)^0<br /><br />E(X^2) = 0 - 0 + 1/8<br /><br />E(X^2) = 1/8<br /><br />Now, we can find the variance using the formula:<br /><br />Var(X) = E(X^2) - [E(X)]^2<br /><br />Var(X) = 1/8 - (-1)^2<br /><br />Var(X) = 1/8 - 1<br /><br />Var = -7/8<br /><br />Therefore, the variance of the random variable X is -7/8.
Поможет ли вам ответ? Оцените за это!