Домой
/
Математика
/
THE PROBABILITY OF HITTING ; INTO INTERVAL [a,b] OF THE NORMAL DISTRIBUTED VARIABLEX IS CALCULATED BY THE FORMULA Select one: Phi ((b-sigma )/(mu ))-Phi ((a-sigma )/(mu )) Phi ((mu -b)/(sigma ))-Phi ((mu -a)/(sigma )) Phi ((b-mu )/(sigma ))-Phi ((a-mu )/(sigma )) Phi ((sigma -b)/(mu ))-Phi ((sigma -a)/(mu )) (2) - 2(2)

Вопрос

THE PROBABILITY OF HITTING ; INTO
INTERVAL [a,b] OF THE NORMAL
DISTRIBUTED VARIABLEX IS
CALCULATED BY THE FORMULA
Select one:
Phi ((b-sigma )/(mu ))-Phi ((a-sigma )/(mu ))
Phi ((mu -b)/(sigma ))-Phi ((mu -a)/(sigma ))
Phi ((b-mu )/(sigma ))-Phi ((a-mu )/(sigma ))
Phi ((sigma -b)/(mu ))-Phi ((sigma -a)/(mu ))
(2) - 2(2)

THE PROBABILITY OF HITTING ; INTO INTERVAL [a,b] OF THE NORMAL DISTRIBUTED VARIABLEX IS CALCULATED BY THE FORMULA Select one: Phi ((b-sigma )/(mu ))-Phi ((a-sigma )/(mu )) Phi ((mu -b)/(sigma ))-Phi ((mu -a)/(sigma )) Phi ((b-mu )/(sigma ))-Phi ((a-mu )/(sigma )) Phi ((sigma -b)/(mu ))-Phi ((sigma -a)/(mu )) (2) - 2(2)

Решения

4.1191 голоса
avatar
Изольда
Экспертная проверкаЭкспертная проверка
мастер · Репетитор 5 лет

Отвечать

The correct answer is: $\Phi (\frac {b-\mu }{\sigma })-\Phi (\frac {a-\mu }{\sigma })$<br /><br />Explanation: The probability of hitting into interval $[a,b]$ of the normal distributed variable X is calculated by the formula $\Phi (\frac {b-\mu }{\sigma })-\Phi (\frac {a-\mu }{\sigma })$, where $\Phi$ is the cumulative distribution function of the standard normal distribution, $\mu$ is the mean of the distribution, and $\sigma$ is the standard deviation.
Поможет ли вам ответ? Оцените за это!