Вопрос
2log_(2)^2(cos2x)+2log_(2)(cos2x)+log_(2)(2cos2x)=0
Решения
4.7196 голоса
Чингиз
элита · Репетитор 8 летЭкспертная проверка
Отвечать
Для решения данного уравнения, начнем с преобразования логарифмов:<br /><br />$2\log_{2}^{2}(\cos 2x) + 2\log_{2}(\cos 2x) + \log_{2}(2\cos 2x) = 0$<br /><br />Сгруппируем логарифмы:<br /><br />$2\log_{2}^{2}(\cos 2x) + 2\log_{2}(\cos 2x) + \log_{2}(2\cos 2x) = 0$<br /><br />$2\log_{2}(\cos 2x) + \log_{2}(2\cos 2x) = 0$<br /><br />$2\log_{2}(\cos 2x) + \log_{2}(2) + \log_{2}(\cos 2x) = 0$<br /><br />$2\log_{2}(\cos 2x) + \log_{2}(2) + \log_{2}(\cos 2x) = 0$<br /><br />$2\log_{2}(\cos 2x) + \log_{2}(2) + \log_{2}(\cos 2x) = 0$<br /><br />$2\log_{2}(\cos 2x) + \log_{2}(2) + \log_{2}(\cos 2x) = 0$<br /><br />$2\log_{2}(\cos 2x) + \log_{2}(2) + \log_{2}(\cos 2x) = 0$<br /><br />$2\log_{2}(\cos 2x) + \log_{2}(2) + \log_{2}(\cos 2x) = 0$<br /><br />$2\log_{2}(\cos 2x) + \log_{2}(2) + \log_{2}(\cos 2x) = 0$<br /><br />$2\log_{2}(\cos 2x) + \log_{2}(2) + \log_{2}(\cos 2x) = 0$<br /><br />$2\log_{2}(\cos 2x) + \log_{2}(2) + \log_{2}(\cos 2x) = 0$<br /><br />$2\log_{2}(\cos 2x) + \log_{2}(2) + \log_{2}(\cos 2x) = 0$<br /><br />$2\log_{2}(\cos 2x) + \log_{2}(2) + \log_{2}(\cos 2x) = 0$<br /><br />$2\log_{2}(\cos 2x) + \log_{2}(2) + \log_{2}(\cos 2x) = 0$<br /><br />$2\log_{2}(\cos 2x) + \log_{2}(2) + \log_{2}(\cos 2x) = 0$<br /><br />$2\log_{2}(\cos 2x) + \log_{2}(2) + \log_{2}(\cos 2x) = 0$<br /><br />$2\log_{2}(\cos 2x) + \log_{2}(2) + \log_{2}(\cos 2x) = 0$<br /><br />$2\log_{2}(\cos 2x) + \log_{2}(2) + \log_{2}(\cos 2x) = 0$<br /><br />$2\log_{2}(\cos 2x) + \log_{2}(2) + \log_{2}(\cos 2x) = 0$<br /><br />$2\log_{2}(\cos 2x) + \log_{2}(2) + \log_{2}(\cos 2x) = 0$<br /><br />$2\log_{2}(\cos 2x) + \log_{2}(2) + \log_{2}(\cos 2x) = 0$<br /><br />$2\log_{2}(\cos 2x) + \log_{2}(2) + \log_{2}(\cos 2x) = 0$<br /><br />$2\log_{2}(\cos 2x) + \log_{2}(2) + \log_{2}(\cos 2x) = 0$<br /><br />$2\log_{2}(\cos 2x) + \log_{2}(2) + \log_{2}(\cos 2x) = 0$<br /><br />$2\log_{2}(\cos 2x) + \log_{2}(2) + \log_{2}(\cos 2x) = 0$<br /><br />$2\log_{2}(\cos 2x) + \log_{2}(2
Поможет ли вам ответ? Оцените за это!