Домой
/
Математика
/
g(a) (3x^4)/(4a)-(3a^2)/(x^2)

Вопрос

g(a)
(3x^4)/(4a)-(3a^2)/(x^2)

g(a) (3x^4)/(4a)-(3a^2)/(x^2)

Решения

4.1270 голоса
avatar
Вениамин
Экспертная проверкаЭкспертная проверка
мастер · Репетитор 5 лет

Отвечать

To find the value of g(a), we need to simplify the given expression.<br /><br />Given expression: $\frac {3x^{4}}{4a}-\frac {3a^{2}}{x^{2}}$<br /><br />Step 1: Find a common denominator for the two fractions.<br />The common denominator is $4ax^2$.<br /><br />Step 2: Rewrite each fraction with the common denominator.<br />$\frac {3x^{4}}{4a}-\frac {3a^{2}}{x^{2}} = \frac {3x^{4} \cdot x^2}{4ax^2} - \frac {3a^{2} \cdot 4a}{4ax^2}$<br /><br />Step 3: Simplify the numerators.<br />$\frac {3x^{6}}{4ax^2} - \frac {12a^3}{4ax^2}$<br /><br />Step 4: Combine the fractions.<br />$\frac {3x^{6} - 12a^3}{4ax^2}$<br /><br />Therefore, the value of g(a) is $\frac {3x^{6} - 12a^3}{4ax^2}$.
Поможет ли вам ответ? Оцените за это!