Домой
/
Математика
/
Select all expressions matching the value of indefinite integral int (e^u+((1)/(2))^x)dx e^ux+(0.5^x)/(ln0.5)+C e^ux-(2^-x)/(ln0.5)+C greener e^ux-(2^-x)/(ln2)+C

Вопрос

Select all expressions matching the value of indefinite integral
int (e^u+((1)/(2))^x)dx
e^ux+(0.5^x)/(ln0.5)+C
e^ux-(2^-x)/(ln0.5)+C
greener
e^ux-(2^-x)/(ln2)+C

Select all expressions matching the value of indefinite integral int (e^u+((1)/(2))^x)dx e^ux+(0.5^x)/(ln0.5)+C e^ux-(2^-x)/(ln0.5)+C greener e^ux-(2^-x)/(ln2)+C

Решения

3.5296 голоса
avatar
Белла
Экспертная проверкаЭкспертная проверка
мастер · Репетитор 5 лет

Отвечать

The correct answer is:<br />$e^{u}x-\frac {2^{-x}}{ln2}+C$<br /><br />Explanation:<br />The indefinite integral $\int (e^{u}+(\frac {1}{2})^{x})dx$ can be evaluated by integrating each term separately.<br /><br />For the first term $e^{u}$, the integral is $e^{u}x$.<br /><br />For the second term $(\frac {1}{2})^{x}$, we can rewrite it as $2^{-x}$. The integral of $2^{-x}$ is $-\frac {2^{-x}}{ln2}$.<br /><br />Therefore, the correct expression for the indefinite integral is $e^{u}x-\frac {2^{-x}}{ln2}+C$, where $C$ is the constant of integration.
Поможет ли вам ответ? Оцените за это!