Домой
/
Математика
/
Bextopa opromopaniponantinte (} -(2)/(sqrt (5)) (1)/(sqrt (5)) ) (c) (} -(1)/(sqrt (5)) (1)/(sqrt (5)) ) (} -(5)/(sqrt (5)) (1)/(sqrt (5)) ) (} -(2)/(sqrt (5)) (1)/(sqrt (5)) )

Вопрос

Bextopa opromopaniponantinte
(} -(2)/(sqrt (5)) (1)/(sqrt (5)) )
(c)
(} -(1)/(sqrt (5)) (1)/(sqrt (5)) )
(} -(5)/(sqrt (5)) (1)/(sqrt (5)) )
(} -(2)/(sqrt (5)) (1)/(sqrt (5)) )

Bextopa opromopaniponantinte (} -(2)/(sqrt (5)) (1)/(sqrt (5)) ) (c) (} -(1)/(sqrt (5)) (1)/(sqrt (5)) ) (} -(5)/(sqrt (5)) (1)/(sqrt (5)) ) (} -(2)/(sqrt (5)) (1)/(sqrt (5)) )

Решения

4.6214 голоса
avatar
Геннадий
Экспертная проверкаЭкспертная проверка
эксперт · Репетитор 3 лет

Отвечать

To solve the given problem, we need to perform the dot product of two vectors. The dot product of two vectors is calculated by multiplying the corresponding components of the vectors and then summing the results.<br /><br />Given vectors:<br />\[<br />\mathbf{A} = \left( -\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}} \right)<br />\]<br />\[<br />\mathbf{B} = \left( \frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}} \right)<br />\]<br /><br />The dot product \(\mathbf{A} \cdot \mathbf{B}\) is calculated as follows:<br />\[<br />\mathbf{A} \cdot \mathbf{B} = \left( -\frac{2}{\sqrt{5}} \right) \cdot \left( \frac{2}{\sqrt{5}} \right) + \left( \frac{1}{\sqrt{5}} \right) \cdot \left( \frac{1}{\sqrt{5}} \right)<br />\]<br /><br />Now, let's calculate each term separately:<br />\[<br />\left( -\frac{2}{\sqrt{5}} \right) \cdot \left( \frac{2}{\sqrt{5}} \right) = -\frac{4}{5}<br />\]<br />\[<br />\left( \frac{1}{\sqrt{5}} \right) \cdot \left( \frac{1}{\sqrt{5}} \right) = \frac{1}{5}<br />\]<br /><br />Adding these results together gives:<br />\[<br />\mathbf{A} \cdot \mathbf{B} = -\frac{4}{5} + \frac{1}{5} = -\frac{3}{5}<br />\]<br /><br />So, the dot product of the given vectors is:<br />\[<br />-\frac{3}{5}<br />\]
Поможет ли вам ответ? Оцените за это!