Вопрос
(9 cdot 10^9 cdot 2 cdot 10^-4 cdot 2 cdot 10^-)/((3 cdot 10^-2))^(2)
Решения
4.4301 голоса
Тимур
профессионал · Репетитор 6 летЭкспертная проверка
Отвечать
Давайте решим данное математическое выражение шаг за шагом:<br /><br />\[ \frac{9 \cdot 10^{9} \cdot 2 \cdot 10^{-4} \cdot 2 \cdot 10^{-1}}{\left(3 \cdot 10^{-2}\right)^{2}} \]<br /><br />Сначала упростим числитель:<br /><br />\[ 9 \cdot 10^{9} \cdot 2 \cdot 10^{-4} \cdot 2 \cdot 10^{-1} = 9 \cdot 2 \cdot 2 \cdot 10^{9} \cdot 10^{-4} \cdot 10^{-1} = 36 \cdot 10^{9 - 4 - 1} = 36 \cdot 10^{4} \]<br /><br />Теперь упростим знаменатель:<br /><br />\[ \left(3 \cdot 10^{-2}\right)^{2} = 3^{2} \cdot (10^{-2})^{2} = 9 \cdot 10^{-4} \]<br /><br />Теперь подставим упрощенные числитель и знаменатель:<br /><br />\[ \frac{36 \cdot 10^{4}}{9 \cdot 10^{-4}} = \frac{36}{9} \cdot \frac{10^{4}}{10^{-4}} = 4 \cdot 10^{4 + 4} = 4 \cdot 10^{8} \]<br /><br />Таким образом, правильный ответ: \( 4 \cdot 10^{8} \).
Поможет ли вам ответ? Оцените за это!