Вопрос
(9 cdot 10^9 cdot 1 cdot 10^-8 cdot 2 cdot 10^-9)/((3 cdot 10^-3))^(2)-(9 cdot 10^9 cdot 1,6 cdot 10^-8 cdot 2 cdot 10^-9)/((4 cdot 10^-3))^(2)
Решения
4.0234 голоса
Юлия
мастер · Репетитор 5 летЭкспертная проверка
Отвечать
To solve the given expression, let's break it down step by step:<br /><br />\[ \frac{9 \cdot 10^{9} \cdot 1 \cdot 10^{-8} \cdot 2 \cdot 10^{-9}}{\left(3 \cdot 10^{-3}\right)^{2}}-\frac{9 \cdot 10^{9} \cdot 1,6 \cdot 10^{-8} \cdot 2 \cdot 10^{-9}}{\left(4 \cdot 10^{-3}\right)^{2}} \]<br /><br />First, let's simplify the numerator and denominator of each fraction separately.<br /><br />For the first fraction:<br />\[ 9 \cdot 10^{9} \cdot 1 \cdot 10^{-8} \cdot 2 \cdot 10^{-9} = 18 \cdot 10^{-8} \]<br /><br />For the denominator:<br />\[ \left(3 \cdot 10^{-3}\right)^{2} = 9 \cdot 10^{-6} \]<br /><br />So, the first fraction becomes:<br />\[ \frac{18 \cdot 10^{-8}}{9 \cdot 10^{-6}} = 2 \cdot 10^{-2} = 0.02 \]<br /><br />For the second fraction:<br />\[ 9 \cdot 10^{9} \cdot 1,6 \cdot 10^{-8} \cdot 2 \cdot 10^{-9} = 28.8 \cdot 10^{-16} \]<br /><br />For the denominator:<br />\[ \left(4 \cdot 10^{-3}\right)^{2} = 16 \cdot 10^{-6} \]<br /><br />So, the second fraction becomes:<br />\[ \frac{28.8 \cdot 10^{-16}}{16 \cdot 10^{-6}} = 1.8 \cdot 10^{-10} \]<br /><br />Now, let's subtract the second fraction from the first fraction:<br />\[ 0.02 - 1.8 \cdot 10^{-10} \]<br /><br />Since \( 1.8 \cdot 10^{-10} \) is a very small number, it can be approximated as 0 for practical purposes. Therefore, the final answer is:<br />\[ 0.02 \]<br /><br />So, the correct answer is \( 0.02 \).
Поможет ли вам ответ? Оцените за это!